The author thanks Dr Karin Aurivillius for valuable help. This investigation is part of a research project financially supported by the Swedish Natural Science Research Council.

References

Aurivillius, K., Cassel, A. \& Fälth, L. (1974). Chem. Scr. 5, 9-12.
Barrow, M., Bürgi, H. B., Johnson, D. K. \& Venanzı, L. M. (1976). J. Am. Chem. Soc. 98, 2356-2357.

Baur, W. H. (1972). Acta Cryst. B28, 1456-1465.
Cassel, A. (1975). Acta Cryst. B31, 1194-1196.
Cassel, A. (1976). Acta Cryst. B32, 2521-2523.
Gieren, A. \& Dederer, B. (1977). Acta Cryst. B33, 32963303.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 260. Ithaca: Cornell Univ. Press.
Teo, B.-K. \& Calabrese, J. C. (1976). J. Chem. Soc. Chem. Commun. pp. 185-186.

Acta Cryst. (1979). B35, 177-178

Tris(1-phenyl-3,5-dimethylpyrazole)silver(I) Nitrate

By R. H. P. Francisco, Y. P. Mascarehnas and J. R. Lechat
Universidade de São Paulo, Instituto de Física e Química de São Carlos, CP369, 13560 São Carlos, SP, Brazil

(Received 25 July 1978; accepted 12 September 1978)

Abstract

Ag}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\right] \mathrm{NO}_{3}, \mathrm{C}_{33} \mathrm{H}_{36} \mathrm{AgN}_{7} \mathrm{O}_{3}\), trigonal, $R 3$, hexagonal axis: $a=15.30$ (2), $c=11.87$ (1) $\AA, \gamma=120.0(2)^{\circ}, V=2406 \AA^{3}, Z=3, D_{m}=1.40$ (flotation), $D_{x}=1.42 \mathrm{Mg} \mathrm{m}^{-3}$. The final R was 0.047 . The coordination around the Ag^{+}corresponds to a trigonal bipyramid with the three N atoms of the ligands in the equatorial plane and NO_{3}^{-}groups at the apices.

Introduction. The crystals were prepared by Dr M . Molina and co-workers (Institute of Chemistry of Araraquara, UNESP). They are white and opaque, with prismatic habit. Chemical analysis showed a composition ratio of $1: 3$ between Ag^{+}and the ligands (Molina, Angst, Garcia \& Melios, 1972). The structure determination was undertaken in order to study the coordination around Ag^{+}and the interaction between Ag^{+} and NO_{3}^{-}. Cell dimensions were determined by a leastsquares fit to settings for 25 reflexions ($\pm h k l$) on a CAD-4 automatic diffractometer. Intensity measurements were carried out up to 30° in θ, with graphitemonochromated Mo $K \alpha$ radiation and a crystal in the form of an elongated block $0.5 \times 0.3 \times 0.8 \mathrm{~mm}$. Lorentz and polarization corrections were applied but no absorption correction $\left[\mu(\mathrm{Mo} K \alpha)=0.66 \mathrm{~mm}^{-1}\right.$] was made. 909 unique reflections were collected and after application of the acceptance criterion $F^{2} \geq 2 \sigma\left(F^{2}\right)$, 898 reflexions were retained for use in the structure analysis.*

[^0]The structure was solved by application of direct methods, using the program MULTAN (Germain, Main \& Woolfson, 1971) and difference Fourier calculations. It was refined by a full-matrix leastsquares method by minimization of $\sum w\left(k\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ until all the atomic parameter shifts were smaller than a standard deviation. The final unweighted R factor omitting unobserved reflections is 0.047 and including them is 0.049 . Anisotropic temperature factors were assigned to all non-hydrogen atoms. Complex neutralatom scattering factors were employed (International Tables for X-ray Crystallography, 1974). Final positional parameters are shown in Table 1.

Discussion. The Ag^{+}and the N of the nitrate group lie on the threefold axis.

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ with their e.s.d.'s

	x	y	z
$\mathrm{Ag}(1)$	0	0	0
$\mathrm{O}(1)$	$10(10)$	$741(9)$	$5500(10)$
$\mathrm{N}(3)$	0	0	$4906(62)$
$\mathrm{N}(1)$	$2281(3)$	$1833(3)$	$427(4)$
$\mathrm{N}(2)$	$1689(3)$	$924(3)$	$-77(4)$
$\mathrm{C}(3)$	$2310(4)$	$766(4)$	$-731(5)$
$\mathrm{C}(4)$	$3301(4)$	$1567(4)$	$-608(5)$
$\mathrm{C}(5)$	$3263(4)$	$2233(4)$	$128(5)$
$\mathrm{C}(6)$	$1839(4)$	$2205(4)$	$1205(5)$
$\mathrm{C}(7)$	$1313(5)$	$1628(6)$	$2114(7)$
$\mathrm{C}(8)$	$858(6)$	$1983(8)$	$2860(7)$
$\mathrm{C}(9)$	$943(6)$	$2922(8)$	$2664(9)$
$\mathrm{C}(10)$	$1480(7)$	$3488(7)$	$1786(12)$
$\mathrm{C}(11)$	$1936(6)$	$3151(5)$	$1042(8)$
$\mathrm{C}(12)$	$1922(6)$	$-159(6)$	$-1448(7)$
$\mathrm{C}(13)$	$4083(5)$	$3203(5)$	$598(8)$

Fig. 1. Diagram of the molecule showing bond lengths (\AA) angles $\left({ }^{\circ}\right)$ and atom numbering.

The Ag^{+}ion is coordinated to three ligand molecules, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}$. It is at the center of a triangle formed by the $\mathrm{N}(2)$ atoms of the pyrazolic rings (Fig. 1). The nitrate group is at about $c / 2$ from the heavy atom (Fig. 2). All relevant distances and angles are shown in Figs. 1 and 2. The structure can be described as non-bonded chains of bipyramids running allong the c direction sharing their axial vertices.

As can be seen from the final values of the thermal parameters of the N and O atoms of NO_{3}^{-}, this group exhibits much thermal motion $\left[\mathrm{N}(3): U_{11}=U_{22}=2 U_{12}\right.$ $=0.079, U_{33}=0.358, U_{23}=U_{13}=0 \AA^{2} ; \mathrm{O}(1): U_{11}=$ $0.151, U_{22}=0.157, U_{33}=0.152, U_{12}=0.087, U_{13}=$ $\left.0.027, U_{23}=0.045 \AA^{2}\right]$. The vibration of the N atom is extremely anisotropic with the greatest amplitude

Fig. 2. The relationship of the nitrate group, showing bond distances (\AA) and angles $\left({ }^{\circ}\right)$.
along the c direction. This may be due to the large free space left by the organic ligands. The NO_{3}^{-}group is not planar and the distance $\mathrm{N}(3)-\mathrm{O}(1)$ [1-33(3) \AA] is longer than the usual value (Addison, Logan \& Wallwork, 1971), but similar to one of the $\mathrm{N}-\mathrm{O}$ distances in $\mathrm{AgNO}_{3}: 1 \cdot 19(6), 1 \cdot 32(6), 1 \cdot 23$ (6) \AA (Lindley \& Woodward, 1966). The deformations and interactions of the nitrate group cannot be checked by infrared spectroscopy because the NO_{3}^{-}characteristic bands are masked by typical bands of the organic ligands. All other bond angles and distances are normal.

This work was sponsored by grants from BIDFINEP, CNPq and FAPESP.

References

Addison, C. C., Logan, N. \& Wallwork, S. C. (1971). Q. Rev. Chem. Soc. 25, 289-322.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Lindley, B. F. \& Woodward, P. (1966). J. Chem. Soc. A, pp. 123-126.
Molina, M., Angst, M., Garcia, E. K. \& Melios, C. V. (1972). J. Inorg. Nucl. Chem. 34, 3215-3220.

Isopropylammonium Trichloromanganate(II) Dihydrate

By Roger D. Willett
Department of Chemistry and The Chemical Physics Program, Washington State University, Pullman, Washington 99164, USA

(Received 17 July 1978; accepted 11 October 1978)

Abstract

CH}_{3}\right)_{2} \mathrm{CHNH}_{3} \mathrm{MnCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{3} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{Mn}-\) N. $2 \mathrm{H}_{2} \mathrm{O}$, monoclinic, $P 2_{1} / c, a=14.435$ (14), $b=$ 5.889 (2), $c=13.281$ (9) $\AA, \beta=109.60$ (2) ${ }^{\circ}, Z=4$, $D_{c}=1.607 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA$. The structure contains discrete $\mathrm{Mn}_{2} \mathrm{Cl}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ dimers which are hydrogen-bonded together to form a two-dimen-

0567-7408/79/010178-04\$01.00
sional layer in the $b c$ plane. Adjacent layers are separated by the organic cations. Each dimer contains a pair of nearly symmetric $\mathrm{Mn}-\mathrm{Cl}-\mathrm{Mn}$ bridges with a bridging angle of 94.58°. The average $\mathrm{Mn}-\mathrm{Cl}$ distance is $2.558 \AA$ and the average $\mathrm{Mn}-\mathrm{O}$ distance is $2 \cdot 212$ Å.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33897 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

